
White Paper: Lightweight Protocol for
Hardware-Efficient DVB Distribution in IP
Networks

GEORG ACHER, DETLEF FLIEGL

BayCom GmbH

and

THOMAS FUHRMANN

Technische Universität München

1. INTRODUCTION

In this paper we present NetCeiver, a lightweight and energy-efficient IPTV archi-
tecture that is fully compatible to existing digital television broadcast systems. It
allows an easy convergence of digital television and IPTV. During the transition,
consumers can thus benefit from the advantages of both technologies.

NetCeiver pursues an integrated approach that combines zero-configuration algo-
rithms with hardware-software co-design to achieve a seamless convergence of DVB
and IP television. Throughout this paper we use the term convergence to describe
a way of delivering content independently of a specific transport medium. In tra-
ditional broadcast systems this would be called simulcast. IPTV allows convergent
deliverance of television content over IP.

NetCeiver is based on reconfigurable hardware. Thereby, it achieves a great flexi-
bility with respect to upcoming standards such as DVB-IPTV. Moreover, NetCeiver
is fully IPv6-compliant to ensure compatibility with future network requirements.

In the following, we first briefly introduce some typical characteristics of tra-
ditional television broadcast systems. Based on our analysis we derive a novel
architecture for transparently transporting broadcast TV services over IP.

2. DVB TO IP NETWORK BRIDGING

2.1 Digital Television Broadcast Systems

Despite the fact that IPTV systems have been available on the market for quite
some time, legacy distribution systems for digital television are still predominant.
Most TV stations employ these systems, and as a result, they are more popular
than any other IPTV solution – at least in western countries.

Author’s address: G. Acher, D. Fliegl, BayCom GmbH, Guardinistr. 47, 81375 München, Ger-
many, {acher|fliegl}@baycom.de
T. Fuhrmann, Lehrstuhl für Netzarchitekturen und Netzdienste, Fakultät für Informatik, Tech-

nische Universität München, 85747 Garching bei München, Germany, fuhrmann@net.in.tum.de
This white paper may not be reproduced without explicit permission by the authors.



2 · Georg Acher et al.

These legacy distribution systems broadcast according to well established stan-
dards over terrestrial antenna, satellite transponders, or broadband cable networks.
Inexpensive receivers provide consumers easy access to these services. Typically,
their quality exceeds that of most current IPTV implementations.

Digital broadcast distribution systems operate according to standards such as
DVB [ETSI ] , ATSC, ISDB, DMB. For simplicity we refer to all these systems as
DVB, because they all use the MPEG2 transport stream format (MPEG2-TS) for
their transmissions.

Digital television is wide-spread. Consumers accept it thoroughly. DVB provides
high quality audio and video transmissions, fast channel switching, and a vast num-
ber of additional services such as electronic program guides or conditional access
(Pay-TV). Many of those services are fully standardized. As a result, consumers
can trust that any commodity receiver is compatible with their preferred service
provider. As stated above, this situation is still totally different in current IPTV
systems.

If we had the same features for IPTV, we could rely on well standardized client
applications or set-top boxes that we could use with more than one IPTV ser-
vice. Unfortunately, this is unlikely to happen in foreseeable future, because IPTV
systems have to meet too many different, mostly commercial interests.

In this paper we present a possible solution: Our NetCeiver approach is based
on DVB. It makes all features of DVB broadcast systems available from within
IP-based local area networks. In the next sections, we present the NetCeiver archi-
tecture, in particular its communication protocols and hardware details.

2.2 Mapping of DVB to IPTV

The idea of delivering digital television broadcast to IP networks is not new at
all. There already exist several implementations that receive, transcode, and dis-
tribute TV programmes via IP. All these solutions provide random access to audio
and video streams, which enables the user to watch TV on LAN attached PCs or
set top boxes. But a closer look at these implementations reveals that they do
not transparently bridge all digital broadcast features [Djama and Ahmed 2006].
Typically, they rely on pre-configured channel and service lists. Therefore only
a fixed set of additional services such as the electronic program guide or teletext
is converted for IP usage. Furthermore, these systems do not keep the broadcast
character of the received streams. Rather they use unicast transport connections.

The recently upcoming standard DVB-IPTV [DVB Consortium 2009] is an ex-
ception to this. It reflects the broadcast character of DVB, but is not yet widely
accepted for production use and requires an expensive infrastructure. Even tough
DVB-IPTV standardization is not yet finished the framework currently consists
of several complex technical specifications. For example DVB service information
requires costly conversion into XML data structures. Also single PIDs of a DVB
service have to be rearranged into an IP stream which is not bandwidth efficient
for services with shared PIDs.

2.3 The NetCeiver Architecture

The primary goal of the NetCeiver architecture is to map full DVB services to
IPTV without changing their quality, feature set, or their broadcast character.



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 3

It should be possible to access digital television services without prior (network)
configuration, proprietary client software, or proprietary set top boxes. Multiple
DVB services, potentially received on different frequencies, should be available for
multiple clients in the local IP network. The latter has be to achieved in a scalable
manner.

In this paper we describe how the NetCeiver achieves these design goals. As
depicted in fig. 1, the NetCeiver can be seen as a head end for DVB distribution
within IP based networks. The NetCeiver system provides a fully convergent solu-
tion in terms of our definition above. There are no restrictions when using DVB
services from an IP network.

NetCeiver NetCeiver NetCeiver

GE−LAN
Set−Top Box

Set−Top Box

Windows PC
Mac

Set−Top Box

Linux PC

Fig. 1. Usage scenario

The NetCeiver architecture is based on highly specialized, cost efficient hardware
with a low power requirement. It provides slots for DVB tuners, CAMs and has
a Gigabit Ethernet interface (see below). It runs a Linux based operating system,
which allows resource efficient, simple and flexible software development.

2.4 Software Architecture

As stated above, we designed the NetCeiver system as an IPTV system for DVB
services. For this purpose we had to first select a suitable transport protocol.
Many multimedia streaming frameworks already exist and mostly deliver compound
streams of audio and video to a client using an unicast protocol. Later in this
section we will discuss some of these frameworks more in detail. To find out which
framework is suitable for our purpose we are now going to define our requirements:

(1) Transparent DVB access: Support for all quality modes, the entire DVB feature
set, and low zapping times (below 1-2 seconds).

(2) Zero configuration: A self-organizing system that runs without any prior setup.

(3) Scalability: Multiple servers can serve multiple clients in an efficient way.

(4) Low cost solution: Server and client are designed to meet low cost requirements.



4 · Georg Acher et al.

The rationale for these requirements is based on the way how digital televi-
sion broadcast systems operate: DVB services are organized as a multiplex called
transport stream (TS). Each TS contains a number of logical channels, which are
identified by a unique 13-bit value, the Packet Identifier (PID). The so-called Pro-
gram Map Table (PMT) lists and describes all PIDs that belong to a DVB service.
Therefore it is necessary to selectively access single PIDs of a TS. A DVB receiver
can bootstrap all available services (PMTs) by accessing the Program Allocation
Table (PAT). The PAT is always located on PID 0.

Studying various IPTV and streaming frameworks we learned that they do not
well support this DVB operation scheme:

(1) None of the established protocols or streaming framework efficiently satisfies the
requirement of transparently addressing single PIDs of DVB transport streams.

(2) Some existing protocols and frameworks, such as UPnP-AV [UPnP Forum 2008]
(also DLNA), Multicast DNS [RFC Draft 2008] or SLP [IETF 1999] provide zero
configuration support, but they are focused on already pre-assembled services.
Implementing them for the NetCeiver system might be possible to some extent,
but it would not be fully compatible with the desired operation scheme. Other
platforms [Fabio Forno et al. 2006] are based on complex frameworks like MHP
and cannot be implemented in low cost designs.

(3) The system has to be bandwidth efficient to be scalable: When different clients
request the same PID, the corresponding data still should be sent over the
network just once. This requirement can only be met by multicast capable
streaming protocols [Sun et al. 2007; Ma and Shin 2002].

(4) Solutions like the standard DVB-IPTV require a costly server infrastructure,
where many different services and protocols have to be supported. On the client
side, traditional DVB-only set-top boxes need significant software changes. It
is not easily possible to just replace the integrated tuner by a network data
source.

2.4.1 IPv6 Multicast based DVB Access. In order to meet these requirements,
we designed the NetCeiver to selectively stream single PIDs of a DVB transport
stream into a LAN using IPv6 multicast. Each stream is controlled by the standard
IPv6 multicast listener discovery protocol (MLDv2 [IETF 2004]). This standard
describes how to report joined or recently left multicast groups within a network
segment: An IPv6 multicast capable router periodically sends out a multicast lis-
tener query to discover the presence of multicast listeners. Every multicast capable
network node that has joined or recently left at least one multicast group reports
its list of groups to the querier. Furthermore, a multicast node reports joining or
leaving groups immediately without a prior listener discovery.

The NetCeiver exploits the MLDv2 protocol by sending out multicast listener
queries periodically and receiving all multicast listener reports. This results in an
up-to-date list of all joined multicast groups. Now the NetCeiver needs to know
which PID from which transponder or frequency has to be streamed on a given
multicast group. To achieve this it applies an algorithm that transforms specific
receiver settings into an IPv6 multicast group and vice versa.

An IPv6 address consists of 128bit, which are written with hexadecimal charac-



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 5

ters in eight groups of 16bits each [IETF 2006]. Depending on the application there
exist different address schemes. This means that not the entire 128bit address space
can be used freely. For example, multicast applications have to set the first 8bits to
0xff, followed by a 8bit scope identifier. Only the remaining 112 bits differentiate
between the multicast groups.

When a specific PID of a DVB transponder is selected, our algorithm calculates
a corresponding 112bit multicast group address. The so calculated multicast group
uniquely identifies the tuning parameters. Hence, we can also calculate the inverse
mapping. Moreover, 112 bit contain enough space to identify all relevant parame-
ters: a delivery system (satellite, terrestrial, etc.), orbital position (for satellites),
frequency, polarization, symbol rate, FEC modes, and PID. Fig. 2 gives an exam-
ple of this scheme. Thus a client tune request is issued just by joining a matching
multicast group which contains all relevant information. Unlike in typical multicast
usage, this group is not required to exist or to be announced, its service and the
streaming resources are created on-demand and set-up after the client request.

Fixed

FF12 3000 0711 17C8 55F0 D4008005 61FF

Frequency
Satellite

PID
Frontend Parameters
Symbol Rate, FEC, ...Position

Prefix
Scope

Multicast&

Priority
Group

Streaming

ID
Service

DVB

Depending on Streaming Group
Assignment shown for DVB

Fig. 2. IPv6 Multicast Group Decoding (example for DVB)

2.4.2 Zero configuration protocol. So far, we have just presented a transparent
multicast based mapping of DVB parameters. The next requirement deals with
the zero configuration feature of the NetCeiver system. To this end, we defined
a fixed set of multicast groups. All clients and servers have to join these groups,
independent of any DVB stream (cf. fig. 3). All NetCeivers distribute their hard-
ware capabilities and their current tuner allocations on these groups periodically.
We use XML coded data structures for this purpose. They comply with the W3C
RDF standard CC/PP (Composite Capability/Preference Profiles [W3C 2004]).

Based on this information, a client can find available NetCeivers and configure
itself automatically accordingly. When a client joins a multicast group for receiv-
ing a specific PID, it also joins a corresponding group that distributes the signal
information from the tuner in charge.

When there are multiple NetCeivers on a network segment, it is also necessary
to synchronize all NetCeivers so that they have consistent information about their
state. This ensures a proper handling of requests if more than one NetCeiver could
serve a multicast group. It also enables resilience in case one NetCeiver fails.

All of these features work in IPv6 without any prior network setup because every
IPv6 capable network interface automatically receives a link local address. With
such an address is it possible to communicate within a network segment.



6 · Georg Acher et al.

Join MCG ’Capabilities’

Client

Multicast ’Capabilities’

NetCeiver

Leave MCG with PID m

Tuning...

Disable PID m

Join MCG with PID n,m and ’Status’

Multicast ’Capabilities’

Multicast ’Capabilities’

Enable PID n,m

Multicast ’Status’

Multicast TS Packets PID n

Power on

"dumb"

Multicast TS Packets PID n,m
Multicast TS Packets PID n,m

Display n

Display n, record m

Stop recording m

(periodic)

(periodic)
(periodic)

(periodic)

Zap to n, record m

Capability available?

Fig. 3. Zero configuration and implicit controlling via join and leave

2.4.3 Scalability. The last requirement remaining is scalability. As said above,
we wanted to have a resource and bandwidth efficient system that can handle multi-
ple servers and clients. The unique multicast group calculation algorithm prevents
the system from duplicating streams for different clients. The self-organization fea-
tures allows a potentially large number of clients to concurrently feed from one or
multiple NetCeivers.

Given the bandwidth limitation of a gigabit network, it is possible to stream a
large number of DVB services: About 100 HDTV or 160 SDTV programmes1 could
be streamed simultaneously. A small number of NetCeivers suffices to satisfy such
a high demand: Each NetCeiver can stream six full DVB-S2/DVB-C transponders,
leading to a maximum bandwidth of about 300Mbit/s. Given a typical mixture
of requests, the number of NetCeivers should not exceed five, unless the switching
hardware can snoop MLDv2 and thus limit the traffic to the respective clients.

Currently, there exists a restriction when accessing a NetCeiver beyond router
boundaries. Due to the operation scheme of multicast routing [IETF 1998] it is
impossible to propagate join operations for groups under certain conditions: Traffic
on multicast groups is being generated by the NetCeiver upon an incoming join
request of a client. A router cannot determine where to forward this request for a
yet inactive group of a specific NetCeiver.

2.5 Server Implementation

The NetCeiver server runs a Linux based operating system which has many Open
Source libraries and services already available. Thus the server functionality relies
on well known APIs of libxml2 and Pthreads. Because the DVB subsystem of the
NetCeiver is implemented in highly specialized hardware there is no need for DVB
support in the Linux kernel. The server is organized in two processes, one that

1Assuming a bandwidth of 8Mbit/s in H.264 for HDTV and 5Mbit/s MPEG2 video in SDTV.



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 7

operates as an hardware abstraction layer (HAL) and another one building the
application server (see figure 4).

Network
Sockets

* DVB Access
* PID−Streaming

* MLDv2 Engine
* ZeroConf Generator
* Resource Manager

NetCeiver Hardware

uCLinux

HAL−Daemon

Custom
FPGA
Hardware

Application−Server

Fig. 4. Software components of NetCeiver server

The application server contains a MLDv2 compatible querier which collects and
handles all multicast listener responses in realtime. Multicast groups that can be
resolved into DVB PIDs are forwarded to the resource manager. Latter takes care
for allocating DVB tuners by a preference function and finds out if a multicast
group can be redirected to another one that already streams the same content. If
an available tuner resource can be found in the system the DVB tuner is being
accessed and hardware based streaming is enabled.

Another important feature of the application server is the zero configuration
support. Therefore it collects internal hardware information and current resource
allocation and transmits these data on predefined multicast groups. It also joins
these groups and receives information from other NetCeivers in the network. This
information being used for preference calculation of the resource manager. Thus it
is possible to have multiple servers without prior configuration.

2.6 Client Implementation

The client functionality is provided by a portable library which can be used on
Linux, Windows and MacOS. Because essential MLDv2 support is not available
natively on Windows XP and MacOS the NetCeiver client implements its own
MLDv2 reporter. This also could speed up zapping between channels under certain
conditions.

The library API is split into zero configuration support and PID streaming func-
tions. First a client application can find out which DVB sources are available on
the network. Second socalled receivers can be instantiated which provide access to
DVB transport streams and out of band information like signal parameters.



8 · Georg Acher et al.

3. HARDWARE

3.1 Overview

Fig. 5 shows the NetCeiver hardware components. We have built a System-on-Chip
(SoC) upon a Xilinx XC3S1600E FPGA [Xilinx Inc. b] with nominally about 1.6
million gates. No standard SoC provides the required performance and data han-
dling capabilities, so we decided to use an FPGA. Although, in general, an FPGA is
more expensive than a standard SoC, it is nevertheless the key for the NetCeiver’s
low component cost of less than EUR50 (excluding tuners). Moreover, the dedi-
cated streaming logic also has a very good power efficiency, namely approximately
4-6W excluding tuners2. The FPGA does not require a heat sink so that the system
does not need a forced cooling. This further increases its overall reliability.

Tuner 1/2

Tuner 3/4

Tuner 5/6

CAM1

CAM2

PCMCIA

6*I2C PCI

64 MB DDR DRAM

MMC/SD

AVR uC

FPGA

Gigabit Ethernet

Terrestrial
Cable
SAT

RF

ADC−IN
GPIO
RS232

RTL8169

Fig. 5. Hardware overview

The FPGA interfaces to three exchangeable tuner cards. Each card can deliver
the transport stream of two tuners. Thus a NetCeiver board can use up to 6 DVB
tuners in parallel. The overall input bandwidth peaks at about 35 to 40Mbyte/s,
depending on the tuned transponders.

Two slots for Conditional Access Modules (CAMs) provide the option to decrypt
the received transport stream data on the fly.

Besides the FPGA, our NetCeiver design requires only a few active components:
An AVR micro-controller with a MMC/SD-Card interface initializes the SoC with
the FPGA bit-stream and the uCLinux image. After boot-up, the AVR allows
simple block device IO to the flash card and acts as an IO expander.

The FPGA has access to a 64Mbyte DDR-DRAM. One half of the memory is
used by the streaming hardware to buffer the TS packets, the other half is dedicated
to the uCLinux-OS.

A PCI-connected Realtek 8169 Gigabit Ethernet interface handles the network
connection. The RTL8169 provides a high performance (above 100Mbytes/s) for

2A DVB-S2 tuner consumes about 2-4W.



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 9

very low cost. This makes it an ideal interface that did not require much develop-
ment work. Additionally, the chip has two separate transmit queues. This made it
easy for us to implement an independent hardware controlled streaming in parallel
to the operating system. We explain this in detail later.

A summary of the technical specifications is given in table 3.1, the PCB is shown
in fig. 6.

Tuners 6 TS inputs (each up to 9Mbyte/s)
CAMs 2 (2 TS in, 2 TS out)
Network RTL8169 Gigabit Ethernet
FPGA XC3S1600
Internal clocks 66MHz except 33MHz PCI, 132MHz DDR & TS matrix
Memory 64MB DDR-DRAM, 128MB Flash
Power consumption 4-6W (excl. tuners and CAMs)
OS uCLinux
Boot time approx. 25s (depending on tuners)
Dimensions approx. 28cm*12cm (16cm*12cm w/o CAMs)
Height 8cm (incl. network and tuner cards)
PCB 4 layer
Component Cost <EUR50 (at mid volume quantities)

Table I. Technical Specifications for the first NetCeiver HW Implementation

Fig. 6. PCB of the NetCeiver

3.2 FPGA data flow

Fig. 7 depicts the SoC that is implemented inside the FPGA. It consists of the CPU
core, the memory controller, a PCI subsystem, and the TS and network stream pro-
cessor. The CPU uses IP cores provided by Xilinx in the Embedded Development
Kit (EDK), all other blocks were specifically developed for the NetCeiver.

The main CPU block is realized by a Microblaze IP core [Xilinx Inc. a] running at
66MHz. The CPU core has instruction and data caches with 8KB each. Although



10 · Georg Acher et al.

Peripherals

CPU

6*TS

2*TS
2*TS

TS Matrix

DDR−DRAM controller

64MB DDR−DRAM

Tuners

CAMs

I2C
AVR

PCMCIA

16 bit/132MHz 32bit / 33MHz

PID Filtering
TS Routing

PCI

Data Bypass

Network engine

HeadersDMA Descriptors TS−Data

Microblaze
8K(I)+8K(D)

8K BIOS
66MHz

PCI host bridge

PID sorting
8*TS

31*1MB
DDR−FIFO

Templates
Header

IPv6/IPv4

Fig. 7. Internal components of the FPGA

the Microblaze is a full featured 32bit RISC CPU and can run the MMU-less
uCLinux, it requires only about 10% of the FPGA’s resources.

The memory controller interfaces to a single-chip, 16 bit data bus DDR-DRAM
clocked at 132MHz. Large buffers for each of the 5 internal ports allow a sustained
memory bandwidth of about 400Mbyte/s for longer burst accesses.

The PCI subsystem implements a 32bit/33MHz host bridge (initiator/target)
to connect to the RTL8169. This allows us to use the 8169 Linux driver without
modifications. Because of the relatively slow CPU, the network bandwidth is only
about 2-3Mbytes/s. This is sufficient for MLDv2 handling, but obviously not for
streaming multiple DVB channels. They require a much higher bandwidth.

For this purpose, the PCI system contains a bypass data path. It is enabled when
accessing a specific memory area. This area does not map to system memory but
to special registers in the network streaming controller. The second transmit queue
of the RTL8169 reads on-demand hardware-generated DMA descriptors and packet
data over this bypass. This fully offloads the CPU from the packet generation
process for streaming. A benchmark using synthetic data packets showed that the
RTL8169 and the PCI-bypass achieved a transmit rate of about 100MB/s, which is
about 80% of a Gigabit link capacity. This is fully sufficient for our purpose, even
when the clients request six full DVB transponders.

On the input side, the TS data from the six tuners is routed through a matrix
for CAM insertion. Afterwards, a table lookup based on the packet ID (PID)
determines if at least one client requires this PID at all. This PID-info table then
also determines the way the packet should take. For the main data path network
streaming3, FIFO areas (1MB per tuner) in system memory buffer the packets.

As already mentioned, one key element of the NetCeiver multicast protocol is that

3There are also some other FIFO destinations specified in the PID-info. NetCeiver supports a

maximum of 31 FIFOs. They are used internally for monitoring and service information parsing.



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 11

each PID is sent over a separate multicast address. Unfortunately, DVB delivers
the PIDs in a randomly multiplexed order. They are not sorted to form bursts of
one PID that could fill up the maximum transfer unit of a network packet. Thus we
need to store and aggregate the packets. For this purpose, we scan 32 successive TS
packets in the FIFO and sort them according to the PID. This allows us – at least
for the high bandwidth video PIDs – to better utilize the MTU. This ensures the
desired high throughput. Typically, a network packet contains 1378 bytes, 62 bytes
in the headers (Ethernet, IPv6 and UDP) and 1316 bytes in seven TS packets. The
outcome of this aggregation is shown below.

The network data generation unit then assembles the full network packet from
such aggregated TS packets. The basic IPv6 Multicast streaming header is based on
templates that the software in the CPU core fills in advance. When the network chip
accesses the header area over the bypass path, the data is finalized on the fly while
being transferred. That means that the transfer unit inserts header fields such as
the payload length or the destination IPv6 address into the template placeholders.
After the header data it reads the packet data as is from the respective packet
buffer.

Besides supporting IPv6 multicast, we made provisions in the PID-info table to
enable IPv4 multicast and unicast, too. A unique ID, which can be propagated to
the data generation engine, selects a linked list of individual connection data such
as a destination MAC, an IPv4 destination address, RTP sequence counters, etc.
This allows us to implicitly multiplex different PIDs to one destination address. As
a result, the hardware also supports traditional streaming protocols and clients.

The described TS handling and network packet generation runs in parallel to
the CPU. It does not need any CPU intervention. The CPU only configures the
IP header templates and updates the PID-info tables for each started or stopped
streaming request. Our tests confirmed that the hardware is actually capable
of streaming the full content of six tuner transport streams (the mentioned 35-
40MB/s) without problems.

All the SoC component occupy only about 50% of the FPGA so far. This leaves
plenty room for future extensions.

4. PERFORMANCE MEASUREMENTS

The performance of the NetCeiver system can be measured in several ways. The
most crucial impact is caused by the zapping latency. Thus we decided to present
the zapping latency distribution of a real life scenario. The testbed consists of a
system with 2 NetCeivers (equipped with 6 DVB-S Tuners) and 3 Linux clients.
The measured latency is a sum of these single timing values: DVB frontend tuning,
NetCeiver resource manager, Network and multicast join/leave, client operating
system / DVB subsystem overhead.

The test is based on a modified szap utility, which is part of DVB applications
for Linux DVB. The latency was measured from tuning to a random transponder
until frontend lock and begin of streaming. For the graph shown in fig. 8 a number
of approx. 1000 tuning requests was issued concurrently by the 3 clients. The graph
shows exemplarily the histogram of one client.

The initial peak at approx. 70ms shows the number of tuning requests when a



12 · Georg Acher et al.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Latency (in sec)

Fig. 8. Zapping latency in real life scenario

transponders was already locked on one of the DVB tuners. So there was no tuning
latency. Most of the requests could be served within 0.5s and only few took up to 2s.
The requests with a very long latency are thoroughly caused by the DVB frontend
tuning latency. A missed multicast listener report causes an average latency of 1s
which is the polling interval of the multicast listener querier. Even though the CPU
of the system runs at 66MHz only, this does not contribute negatively, because the
execution speed of the server process does not influence the measured latency.

We also examined the efficiency of the packet aggregation. Figure 9 shows the
distribution of packet sizes for one typical TV service, including PIDs for video
(about 8 MBit/s), audio and EPG. About 60% of all packets carry the maximum
possible payload size. Audio PIDs appear only once or twice in the aggregation
window, so about 60% of them cannot be combined. In summary, the overhead for
the 62 bytes IP-header is about 11.2%.

Figure 10 shows the packet distribution for a different scenario. In 20MBit/s
three TV services from one tuner are streamed. The video bandwidths are about
8MBit/s for two services and 3MBit/s for the third. Here, the 32 TS packet window
is divided by the three video streams. The full packet usage drops to about 30%
and smaller packets for video data appear more often. Still, the single TS packet is
mainly used for the low bandwidth audio data. In this case, the header overhead
is about 15.5%.

These results imply that the aggregation window should be increased when the
NetCeiver is used in a DVB head-end scenario with many clients4. Since the current
choice for 32 TS packets is based on the uncascaded depth of the FPGA’s distributed
RAMs, it is not fixed by the HW and can be easily increased. On the other hand,
an aggregation over too many packets changes the realtime properties of the stream
and maybe complicates instant audio/video sync.

4It should be noted that the aggregation capability is not affected when streaming from multiple

tuners.



Lightweight Protocol for Hardware-Efficient DVB Distribution in IP Networks · 13

���
���
���
���

����
����
����
����
����

����
����
����
����
����

��
��
��
��

188 376 752 940 1128 1316
Payload size

P
ro

ba
bi

lit
y

0.3

0.4

0.5

0.6

0.2

0.1

0

EPG

S1 video
S1 audio

564

Fig. 9. Payload size distribution of a single service

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
������
���
���

���
���
��������
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

����

��
��
��
��

����

S1 video
S1 audio

EPG
S3 audio
S3 video
S2 audio
S2 video

P
ro

ba
bi

lit
y 0.2

0.25

0.3

0.15

0.1

0.05

0
188 376

Payload size
564 752 940 1128 1316

Fig. 10. Payload size distribution of multiple services

5. CONCLUSION AND OUTLOOK

In this paper we have presented the NetCeiver architecture for distributing DVB-
like broadcast over IP networks. NetCeiver uses standard protocols such as IPv6
multicast with MLDv2. Our main design goals were zero configuration, scalable
streaming to an arbitrary number of clients, and full service transparency for typical
DVB receivers.

We have developed a cost-efficient FPGA based hardware that implements our
NetCeiver architecture. It allows easy deployment in the consumer market. More-
over, our design is power efficient and allows a very high network performance. We
achieve this with a specialized stream handling inside the FPGA.



14 · Georg Acher et al.

The NetCeiver architecture is available through a commercial vendor since late
2007. The customer feedback shows that it meets its design goals. The NetCeiver
product works as a detachable DVB tuner component of a high-end set-top box.
It is also available as a stand-alone head end for inexpensive and lightweight STB
clients.

Yet, the development is not finished. In the future, we will extend the NetCeiver
core functionality by VOD-services. Furthermore, in the work presented here we
did not consider security issues. All devices inside the network are supposed to be
trusted. Future evolutions of the system should consider authentication methods
and digital signature procedures. Although not as lightweight as the NetCeiver
multicast protocol, industry standards like UPnP-AV and the related DVB-IPTV
might provide an important basis for interoperability. Thus we plan to integrate
the NetCeiver hardware into these frameworks.

REFERENCES

Djama, I. and Ahmed, T. 2006. An mpeg-21-enabled video adaptation engine for universal iptv

access. In in Proc. IEEE Boadband Multimedia Symposium 2006, Las Vegas.

DVB Consortium. 2009. DVB-IPTV 1.4: Transport of MPEG 2 TS Based DVB Services over
IP Based Networks (and associated XML) (dTS 102 034 V1.4.1).

http://dvb.org/technology/standards/index.xml#internet.

ETSI. DVB Standards. http://www.etsi.org/WebSite/Technologies/DVB.aspx.

Fabio Forno et al. 2006. HoNeY: a MHP-based Platform for HOme NEtwork interoperability.
pp.102-110, 20th International Conference on Advanced Information Networking and Appli-

cations - Volume 2 (AINA’06). http://omero.polito.it/appeal/articoli/Honey.pdf.

IETF. 1998. Protocol Independent Multicast - Sparse Mode (PIM-SM), RFC2362.

http://tools.ietf.org/html/rfc2362.

IETF. 1999. Service Location Protocol, Version 2, RFC2608.

http://tools.ietf.org/html/rfc2608.

IETF. 2004. Multicast Listener Discovery Version 2 (MLDv2) for IPv6, RFC3810.

http://tools.ietf.org/html/rfc3810.

IETF. 2006. IP Version 6 Addressing Architecture, RFC4291.
http://tools.ietf.org/html/rfc4291.

Ma, H. and Shin, K. G. 2002. Multicast video-on-demand services. ACM Computer Communi-

cation Review 32, 2002.

RFC Draft. 2008. Multicast DNS.
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt.

Sun, H., Vetro, A., Xin, J., Sun, H., Vetro, A., and Xin, J. 2007. An overview of scalable

video streaming. Wireless Communications and Mobile Computing 7, 159–172.

UPnP Forum. 2008. UPnP AV Architecture. http://www.upnp.org/standardizeddcps/default.asp.

W3C. 2004. Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0.
http://www.w3.org/TR/CCPP-struct-vocab/.

Xilinx Inc. MicroBlaze Processor.

http://www.xilinx.com/products/design resources/proc central/microblaze.htm.

Xilinx Inc. Spartan-3E FPGA Family Data Sheet.
http://www.xilinx.com/support/documentation/spartan-3e data sheets.htm.


